Gas Tungsten Arc Welding - TIG Welding


The TIG process as it is known today is a combination of the work done by General Electric in the 1920s to develop the basic process, the work done by Northrop in the 1940s to develop the torch itself, and the use of helium-shielding gas and a tungsten electrode. The process was developed for welding magnesium in the Northrop XP-56 flying wing to eliminate the corrosion and porosity issues with the atomic hydrogen process they had been using with a boron flux. It was not readily used on other materials until the late 1950s when it found merit in welding space-age super alloys. It was also later used on other metals, such as aluminum and steel, to a much greater degree.

Modern TIG welding machines are offered in DC, AC, or with AC/DC configurations, and use either transformer or inverter-based technology. Typically, a machine capable of AC output is required for aluminum. The TIG torch itself has changed little since the first Northrop patent. TIG welding is similar to oxy-fuel welding in that the heat source (torch) is manipulated with one hand, and the filler, if used, is manipulated with the other. A distinct difference is to control the heat input to the metal. The heat control may be preset and fixed by a machine setting or variable by use of a foot pedal or torch-mounted control.

Several types of tungsten electrode are used with the TIG welder. Thoriated and zirconiated electrodes have better electron emission characteristics than pure tungsten, making them more suitable for DC operations on transformer-based machines, or either AC or DC with the newer inverter-based machines. Pure tungsten provides a better current balance with AC welding with a transformer based machine, which is advantageous when welding aluminum and magnesium. The equipment manufacturers’ suggestions for tungsten type and form should be followed as this is an ever changing part of the TIG technology.

The shape of the electrode used in the TIG welding torch is an important factor in the quality and penetration of the weld. The tip of the electrode should be shaped on a dedicated grinding stone or a special-purpose tungsten grinder to avoid contaminating the electrode. The grinding should be done longitudinally, not radially, with the direction of stone travel away from the tip. Figure shows the effects of a sharp versus blunt electrode with transformer-based machines.

Gas Tungsten Arc Welding (TIG Welding)
Effects of sharp and blunt electrodes

When in doubt, consult the machine manufacturer for the latest up-to-date suggestions on tungsten preparation or if problems arise.

The general guidelines for weld quality, joint fit prior to welding, jigging, and controlling warp all apply to this process in the same regard as any other welding method. Of particular note are the additional process steps that sometimes must be taken to perform a quality weld; these are dealt within their appropriate sections.

TIG Welding 4130 Steel Tubing

Welding 4130 with TIG is not much different than welding other steels as far as technique is concerned. The following information generally addresses material under 0.120-inch thick.

Clean the steel of any oil or grease and use a stainless steel wire brush to clean the work piece prior to welding. This is to prevent porosity and hydrogen embrittlement during the welding process. The TIG process is highly susceptible to these problems, much more so than oxy-acetylene welding, so care must be taken to ensure all oils and paint are removed from all surfaces of the parts to be welded.

Use a TIG welder with high-frequency starting to eliminate arc strikes. Do not weld where there is any breeze or draft; the welds should be allowed to cool slowly. Preheating is not necessary for tubing of less than 0.120-inch wall thickness; however, post-weld tempering (stress relieving) is still recommended to prevent the possible brittleness of the area surrounding the weld due to the untempered martensite formations caused by the rapid cooling of the weld inherent to the TIG process.

If you use 4130 filler rod, preheat the work before welding and heat treat afterward to avoid cracking. In a critical situation such as this, engineering should be done to determine preheat and post-weld heat treatment needed for the particular application.

Weld at a slower speed, make sufficiently large fillets, and make them flat or slightly convex, not concave. After the welding is complete, allow the weldment to cool to room temperature. Using an oxy-acetylene torch set to a neutral flame, heat the entire weldment evenly to 1,100 °F–1,200 °F; hold this temperature for about 45 minutes per inch of metal thickness. The temperature is generally accepted to be a dull red in ambient lighting. Note that for most tubing sections, the temperature needs to be held for only a minute or two. This process is found in most materials engineering handbooks written by The Materials Information Society (ASM) and other engineering sources. When working on a critical component, seek engineering help if there is any doubt.

TIG Welding Stainless Steel

Stainless steels, or more precisely, corrosion-resisting steels, are a family of iron-based metals that contain chromium in amounts ranging from 10 percent to about 30 percent. Nickel is added to some of the stainless steels, which reduces the thermal conductivity and decreases the electrical conductivity. The chromium-nickel steels belong in the AISI 300 series of stainless steels. They are nonmagnetic and have austenitic microstructure. These steels are used extensively in aircraft in which strength or resistance to corrosion at high temperature is required.

All of the austenitic stainless steels are weldable with most welding processes, with the exception of AISI 303, which contains high sulfur, and AISI 303Se, which contains selenium to improve its machinability.

The austenitic stainless steels are slightly more difficult to weld than mild-carbon steel. They have lower melting temperatures, and a lower coefficient of thermal conductivity, so welding current can be lower. This helps on thinner materials because these stainless steels have a higher coefficient of thermal expansion, requiring special precautions and procedures to be used to reduce warping and distortion. Any of the distortion-reducing techniques, such as skip welding or back-step welding, should be used. Fixtures and/or jigs should be used where possible. Tack welds should be applied twice as often as normal.

The selection of the filler metal alloy for welding the stainless steel is based on the composition of the base metal. Filler metal alloys for welding austenitic type stainless include AISI No. 309, 310, 316, 317, and 347. It is possible to weld several different stainless base metals with the same filler metal alloy. Follow the manufacturer’s recommendations.

Clean the base metal just prior to welding to prevent the formation of oxides. Clean the surface and joint edges with a nonchlorinated solvent, and brush with a stainless steel wire brush to remove the oxides. Clean the filler material in the same manner.

To form a weld bead, move the torch along the joint at a steady speed using the forehand method. Dip the filler metal into the center of the weld puddle to ensure adequate shielding from the gas.

The base metal needs protection during the welding process by either an inert gas shield, or a backing flux, on both sides of the weld. Back purging uses a separate supply of shielding gas to purge the backside of the weld of any ambient air. Normally, this requires sealing off the tubular structures or using other various forms of shields and tapes to contain the shielding gas. A special flux may also be used on the inside of tubular structures in place of a back purge. This is especially advantageous with exhaust system repairs in which sealing off the entire system is time consuming. The flux is the same as is used for the oxy-acetylene welding process on stainless materials.

TIG Welding Aluminum

TIG welding of aluminum uses similar techniques and filler materials as oxy-fuel welding. Consult with the particular welding machine manufacturer for recommendations on tungsten type and size, as well as basic machine settings for a particular weldment because this varies with specific machine types. Typically, the machine is set to an AC output waveform because it causes a cleaning action that breaks up surface oxides. Argon or helium shielding gas may be used, but argon is preferred because it uses less by volume than helium. Argon is a heavier gas than helium, providing better cover, and it provides a better cleaning action when welding aluminum.

Filler metal selection is the same as used with the oxy-fuel process; however, the use of a flux is not needed as the shielding gas prevents the formation of aluminum oxide on the surface of the weld pool, and the AC waveform breaks up any oxides already on the material. Cleaning of the base metal and filler follows the same guidelines as for oxy-fuel welding. When welding tanks of any kind, it is a good practice to back-purge the inside of the tank with a shielding gas. This promotes a sound weld with a smooth inner bead profile that can help lessen pinhole leaks and future fatigue failures.

Welding is done with similar torch and filler metal angles as in oxy-fuel welding. The tip on the tungsten is held a short distance (1⁄16 –1⁄8-inch) from the surface of the material, taking care not to ever let the molten pool contact the tungsten and contaminate it. Contamination of the tungsten must be dealt with by removal of the aluminum from the tungsten and re-grinding the tip to the factory recommended profile.

TIG Welding Magnesium

Magnesium alloys can be welded successfully using the same type joints and preparation that are used for steel or aluminum. However, because of its high thermal conductivity and coefficient of thermal expansion, which combine to cause severe stresses, distortion, and cracking, extra precautions must be taken. Parts must be clamped in a fixture or jig. Smaller welding beads, faster welding speed, and the use of a lower melting point and lower shrinkage filler rods are recommended.

DC, both straight or reverse polarity, and AC, with superimposed high frequency for arc stabilization, are commonly used for welding magnesium. DC reverse polarity provides better cleaning action of the metal and is preferred for manual welding operations.

AC power sources should be equipped with a primary contactor operated by a control switch on the torch or a foot control for starting or stopping the arc. Otherwise, the arcing that occurs while the electrode approaches or draws away from the work piece may result in burned spots on the work.

Argon is the most common used shielding gas for manual welding operations. Helium is the preferred gas for automated welding because it produces a more stable arc than argon and permits the use of slightly longer arc lengths. Zirconiated, thoriated, and pure tungsten electrodes are used for TIG welding magnesium alloys.

The welding technique for magnesium is similar to that used for other non-ferrous metals. The arc should be maintained at about 5⁄16-inch. Tack welds should be used to maintain fit and prevent distortion. To prevent weld cracking, weld from the middle of a joint towards the end, and use starting and run off plates to start and end the weld. Minimize the number of stops during welding. After a stop, the weld should be restarted about ½-inch from the end of the previous weld. When possible, make the weld in one uninterrupted pass.

TIG Welding Titanium

The techniques for welding titanium are similar to those required for nickel-based alloys and stainless steels. To produce a satisfactory weld, emphasis is placed on the surface cleanliness and the use of inert gas to shield the weld area. A clean environment is one of the requirements to weld titanium.

TIG welding of titanium is performed using DC straight polarity. A water-cooled torch, equipped with a ¾-inch ceramic cup and a gas lens, is recommended. The gas lens provides a uniform, nonturbulent inert gas flow. Thoriated tungsten electrodes are recommended for TIG welding of titanium. The smallest diameter electrode that can carry the required current should be used. A remote contactor controlled by the operator should be employed to allow the arc to be broken without removing the torch from the cooling weld metal, allowing the shielding gas to cover the weld until the temperature drops.

Most titanium welding is performed in an open fabrication shop. Chamber welding is still in use on a limited basis, but field welding is common. A separate area should be set aside and isolated from any dirt producing operations, such as grinding or painting. Additionally, the welding area should be free of air drafts and the humidity should be controlled.

Molten titanium weld metal must be totally shielded from contamination by air. Molten titanium reacts readily with oxygen, nitrogen, and hydrogen; exposure to these elements in air or in surface contaminants during welding can adversely affect titanium weld properties and cause weld embrittlement. Argon is preferred for manual welding because of better arc stability characteristics. Helium is used in automated welding and when heavier base metals or deeper penetration is required.

Care must be taken to ensure that the heat affected zones and the root side of the titanium welds are shielded until the weld metal temperature drops below 800 °F. This can be accomplished using shielding gas in three separate gas streams during welding.
  1. The first shielding of the molten puddle and adjacent surfaces is provided by the flow of gas through the torch. Manufacturer recommendations should be followed for electrodes, tip grinding, cup size, and gas flow rates.
  2. The secondary, or trailing, shield of gas protects the solidified weld metal and the heat affected zone until the temperature drops. Trailing shields are custom-made to fit a specific torch and a particular welding operation.
  3. The third, or backup, flow is provided by a shielding device that can take many forms. On straight seam welds, it may be a grooved copper backing bar clamped behind the seam allowing the gas flow in the groove and serving as a heat sink. Irregular areas may be enclosed with aluminum tents taped to the backside of welds and purged with the inert gas.

Titanium weld joints are similar to those employed with other metals. Before welding, the weld joint surfaces must be cleaned and remain free of any contamination during the welding operation. Detergent cleaners and nonchlorinated cleaners, such as denatured isopropyl alcohol, may be used. The same requirements apply to the filler rod, it too must be cleaned and free of all contaminates. Welding gloves, especially the one holding the filler, must be contaminate free.

A good indication and measure of weld quality for titanium is the weld color. A bright silver weld indicates that the shielding is satisfactory and the heat affected zone and backup was properly purged until weld temperatures dropped. Straw-colored films indicate slight contamination, unlikely to affect mechanical properties; dark blue films or white powdery oxide on the weld would indicate a seriously deficient purge. A weld in that condition must be completely removed and rewelded.

RELATED POSTS
Previous Post Next Post

You May Like