High Speed Aerodynamics/ Compressible Aerodynamics

High-speed aerodynamics, often called compressible aerodynamics, is a special branch of study of aeronautics. It is utilized by aircraft designers when designing aircraft capable of speeds approaching Mach 1 and above.

In the study of high-speed aeronautics, the compressibility effects on air must be addressed. This flight regime is characterized by the Mach number, a special parameter named in honor of Ernst Mach, the late 19th century physicist who studied gas dynamics. Mach number is the ratio of the speed of the aircraft to the local speed of sound and determines the magnitude of many of the compressibility effects.

As an aircraft moves through the air, the air molecules near the aircraft are disturbed and move around the aircraft. The air molecules are pushed aside much like a boat creates a bow wave as it moves through the water. If the aircraft passes at a low speed, typically less than 250 mph, the density of the air remains constant. But at higher speeds, some of the energy of the aircraft goes into compressing the air and locally changing the density of the air. The bigger and heavier the aircraft, the more air it displaces and the greater effect compression has on the aircraft.

High Speed Aerodynamics, Compressible Aerodynamics
Breaking the sound barrier

This effect becomes more important as speed increases. Near and beyond the speed of sound, about 760 mph (at sea level), sharp disturbances generate a shockwave that affects both the lift and drag of an aircraft and flow conditions downstream of the shockwave. The shockwave forms a cone of pressurized air molecules which move outward and rearward in all directions and extend to the ground. The sharp release of the pressure, after the buildup by the shockwave, is heard as the sonic boom. [Figure]

Listed below are a range of conditions that are encountered by aircraft as their designed speed increases.
Subsonic conditions occur for Mach numbers less than one (100–350 mph). For the lowest subsonic conditions, compressibility can be ignored.
  • As the speed of the object approaches the speed of sound, the flight Mach number is nearly equal to one, M = 1 (350–760 mph), and the flow is said to be transonic. At some locations on the object, the local speed of air exceeds the speed of sound. Compressibility effects are most important in transonic flows and lead to the early belief in a sound barrier. Flight faster than sound was thought to be impossible. In fact, the sound barrier was only an increase in the drag near sonic conditions because of compressibility effects. Because of the high drag associated with compressibility effects, aircraft are not operated in cruise conditions near Mach 1.
  • Supersonic conditions occur for numbers greater than Mach 1, but less then Mach 3 (760–2,280 mph). Compressibility effects of gas are important in the design of supersonic aircraft because of the shockwaves that are generated by the surface of the object. For high supersonic speeds, between Mach 3 and Mach 5 (2,280–3,600 mph), aerodynamic heating becomes a very important factor in aircraft design.
  • For speeds greater than Mach 5, the flow is said to be hypersonic. At these speeds, some of the energy of the object now goes into exciting the chemical bonds which hold together the nitrogen and oxygen molecules of the air. At hypersonic speeds, the chemistry of the air must be considered when determining forces on the object. When the Space Shuttle re-enters the atmosphere at high hypersonic speeds, close to Mach 25, the heated air becomes an ionized plasma of gas, and the spacecraft must be insulated from the extremely high temperatures.

Additional information pertaining to high-speed aerodynamics refer high speed flight post. As the design of aircraft evolves and the speeds of aircraft continue to increase into the hypersonic range, new materials and propulsion systems will need to be developed. This is the challenge for engineers, physicists, and designers of aircraft in the future.